2 stories
·
0 followers

The False Logic behind Science Denial

10 Comments and 61 Shares

The False Logic behind Science Denial

Read the whole story
jkrois
1587 days ago
reply
Share this story
Delete
10 public comments
fxer
939 days ago
reply
Hulk’s guitar isn’t plugged in but fuckit, we’re not here to listen to him play rythym
Bend, Oregon
sarcozona
1049 days ago
reply
“We hypothesize that migraine should be considered a neural disorder of brain function, in which alterations in aminergic networks integrating the limbic system with the sensory and homeostatic systems occur early and persist after headache resolution and perhaps interictally. The associations with some of these other disorders may allude to the inherent sensory sensitivity of the migraine brain and shared neurobiology and neurotransmitter systems rather than true co-morbidity.”
Epiphyte City
annecakes
1339 days ago
reply
Modern Love Season 2: An Interview with Andrew Rannells

https://www.nytimes.com/2021/08/13/style/modern-love-episode-7-andrew-rannells.html
Alexjw
1438 days ago
reply
Watch
Wigan
MenageAquad
1650 days ago
reply
Google Adds RSS to Chrome for Mobile https://www.phonescoop.com/articles/article.php?a=22642

Long live Google Reader??
sfkendrick
1886 days ago
reply
this. If a in hi p
PCrapidy
2118 days ago
reply
Robert Mueller's Corrupt History
https://youtu.be/1kOsl0bEjew
Kekistan, USA
Ferret
2176 days ago
reply
https://www.youtube.com/watch?v=z2rIgsPlJd0
acdha
2246 days ago
reply
Classy
Washington, DC
jose5465
2254 days ago
reply
Descarga aquí la app de MARCA.com.
@elmundoes
https://itunes.apple.com/es/app/el-mundo-diario-online/id324300162?mt=8

Surface deep: Light-responsive top layer of plastic film induces movement

1 Comment

Azobenzene-containing plastic film is a peculiar material; its surface can change shape when exposed to light, making it a valuable component in modern technologies/devices like TV screens and solar cells. Scientists now show that only a thin, topmost layer of the light-dependent azobenzene-containing plastic film needs to be light-sensitive, rather than the entire film, opening up new ways to potentially reduce production costs and revolutionize its use.

So far, it had been widely accepted that the light-sensitive nature of this material extends throughout the whole film, but scientists did not understand what was causing the shape-shifting movement. A group of scientists led by Dr Takahiro Seki of Nagoya University, Japan, set out to figure out exactly how this happens; they have published their findings in the journal Scientific Reports.

They cite a well-studied phenomenon called Marangoni flow as their inspiration: owing to this phenomenon, differences in "surface tension" (the property by which the particles in the outermost layer of liquids are always attracted inwards, creating a boundary for the liquid) cause many soft, plastic films to move in a peculiar pattern. The most famous example of this phenomenon is the formation of "wine legs" or droplets of liquid evaporating and streaking down the surfaces of wine glasses.

They decided to test whether ultraviolet light triggered changes in the surface tension of azobenzene plastic film, and whether those changes resulted in the film moving. They chose to first cover azobenzene film with a very thin top layer that was light-sensitive, then exposed this film to UV radiation. Next, they did the same with film that was covered in a top layer unresponsive to light. To their excitement, the scientists found surface structural changes in the film with a light-sensitive top layer, but not in the film with a "light-insensitive" top layer. "This is the first time anyone has demonstrated that only the light responsiveness of a very thin 'nanometer' level layer is needed for azobenzene-containing film to alter its surface morphology under UV," said Dr Seki.

An important observation of this study is that the movement of the material isn't dependent on "light polarization," or the direction in which light waves travel. If it were, that would suggest that there is another force on the molecular level affecting the whole film. Instead, Dr Seki concludes that it is probably the changes in chemical structure at the surface induced by the UV radiation that changes surface tension, inducing movement to the top of the film.

Describing the wider ramifications of their results, Dr Seki states: "We are only at the cusp of developing this discovery onto an industrial scale, but you can imagine how needing only a very small amount of light-sensitive material can reduce costs. Many optical devices like photocopiers, printers, and monitors depend on the light-based surface change in azobenzene polymer film. Based on our findings, azobenzene film can also act as an "actuator" (that part in a device that moves other parts) in nanomachinery."

These newly discovered properties have vast implications, from improving the economics of production and lowering material prices, to advancing the field of nanotechnology itself.

make a difference: sponsored opportunity

Story Source:

Materials provided by Nagoya University. Note: Content may be edited for style and length.

Journal Reference:

  1. Issei Kitamura, Keisuke Kato, Rafael Benjamin Berk, Takashi Nakai, Mitsuo Hara, Shusaku Nagano, Takahiro Seki. Photo-triggered large mass transport driven only by a photoresponsive surface skin layer. Scientific Reports, 2020; 10 (1) DOI: 10.1038/s41598-020-69605-8
Read the whole story
jkrois
1589 days ago
reply
Surface deep: Light-responsive top layer of plastic film induces movement
Share this story
Delete